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The harmonic oscillator and Coulomb potentials—two
exceptions from the point of view of a function theory

I A Ivanov
Institute of Spectroscopy, Academy of Sciences of Russia, 142092, Troitsk, Moscow Region,
Russia

Received 30 January 1996

Abstract. We show that the Coulomb potential, one- and three-dimensional harmonic oscillator
potentials are the only potentials belonging to a certain class which have the following property.
The Schr̈odinger equation has infinitely many eigenvalues belonging to the discrete spectrum
with the eigenfunctions having only a finite number of zeros in a complex plane. We show that it
is due to this fact that these two potentials are the only potentials, belonging to the class defined
in the paper, for which the semiclassical quantization gives an energy spectrum coinciding with
the results of an exact quantum mechanical treatment.

It is well known that the potential of the harmonic oscillator and the Coulomb potential
exhibit a number of peculiar properties both in the classical and quantum domains. In
classical mechanics these two potentials are the only potentials permitting the closed
trajectories of a particle revolving around the centre of attraction (Landau and Lifshitz
1971). In quantum mechanics these two potentials are also singled out. One can mention
the well known fact that the semiclassical approximation applied to the harmonic oscillator
and the Coulomb problem gives an exact result in both cases. In the present paper we show
that the harmonic oscillator and the Coulomb potentials are the only potentials belonging
to a certain class of potentials (defined below) for which the semiclassical approximation
gives an exact energy spectrum. This property is connected with certain function theoretical
properties of the bound-state wavefunctions. We shall show that the harmonic oscillator and
the Coulomb potentials are the only potentials belonging to a certain class, for which the
bound-state wavefunctions have only a finite number of zeros in the complex plane.

We consider the one-dimensional Schrödinger equation

−1

2

d2y

dx2
+ U(x)y = Ey (1)

wherex can vary in the intervals [0, +∞) or (−∞, ∞). The potentialU(x) in equation (1)
has the following form,

U(x) = l(l + 1)

2x2
+ f (x)

x
(2)

wherel is an integer non-negative parameter, andf (x) is an entire function of a variable
x. If eigenvalue problem (1) is posed on the interval [0, ∞), we search for the solution
y(x) behaving asxl+1 near the origin. If in (1),x ∈ (−∞, +∞), then in (2) the parameter
l = 0 and we search for the solutiony(x) regular at the origin. Since the potentialU(x) in
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(1) is an analytic function ofx we can consider the solutiony(x) as an analytic function in
a wholex complex plane regardless of the interval on which the eigenvalue problem (1) is
posed. According to the general theory of ordinary differential equations, the solutiony(x)

of (1) can have the singularities only in the points whereU(x) is singular. Sincef (x) in
(1) is an entire function, imposed boundary conditions imply thaty(x) is an entire function
of x.

In the present paper we consider the potentials belonging to the following class. Let

M(r) = max
|x|=r

|y(x)|.

We consider in (1) the potentials for whichM(r) < exp(rµ) for some finite positive number
µ and for all sufficiently larger. In other words, a finite positive numberµ exists, such
that the maximum of an absolute value ofy(x) for large values of|x| grows no faster than
exp(rµ). For example, if in (2) the functionf (x) is a polynomial, all the solutions of
equation (1) possess this property.

We are going to prove the following statement.
Let the eigenvalue problem (1) have infinitely many eigenvalues belonging to

the discrete spectrum with the eigenfunctions possessing the following property. An
eigenfunction, considered as a function of a complex variablex, has only a finite number
of zeros in a complex plane of a variablex. Then, for the functionf (x) from (2) we have
two and only two possibilities:f (x) = ax3 + bx2 or f (x) = c = constant.

The proof is elementary.
Entire functions satisfying inequalityM(r) < exprµ for some finiteµ and all sufficiently

large r are known in the literature as entire functions of a finite order. According to the
general theory of entire functions (Markushevitch 1968), any entire function of a finite order
y(x) having only a finite number of zeros in the complexx-plane must have the following
form,

y(x) = Pn(x) expQm(x) (3)

wherePn(x) and Qm(x) are the polynomials of degreen and m, respectively. We note
now that if (1) has a solution (3) then, for sufficiently large|x|, the asymptotic form of
y(x) is given by the semiclassical WBKJ formula (Landau and Lifshitz 1975). Indeed,
y(x) = Pm expQn = expG, whereG = Qn + ln Pm. It is easy to see that the conditions of
the applicability of the WBKJ approximation (G′′ � G′2) are always fulfilled for sufficiently
large |x|. Thus, the asymptotic form ofy(x) is given by

y(x) ∼ (U(x) − E)−
1
4 exp

{
−

x∫
0

√
2(U(t) − E) dt

}
|x| → ∞. (4)

We emphasize that the asymptotic form (4) is valid everywhere in the complexx-plane
for sufficiently large|x|. Let us consider first the case whenQm(x) in (3) is a polynomial of
a first degree. It is easy to see that the expression in braces in (4) can give a polynomial of
a first degree for allx only if |U(x)| < C for some constantC for all sufficiently large|x|.
(If there was some ray in a complexx-plane along which|U(x)| → ∞, then the expression
in braces in (4) would not give asymptotically the polynomial of a first degree.)

Using this upper bound forU(x) we obtain the bound forf (x) : |f (x)| < C|x| for
sufficiently large|x|. Since f (x) is an entire function it implies thatf (x) = c + c1x

(according to the Liouville theorem). With the termc1x giving only an additive change of
an energy scale, we can consider only the casef (x) = C = constant corresponding to the
Coulomb potential. As is well known, in this case (ifC < 0) wavefunctions of the discrete
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spectrum of an eigenvalue problem (1) have the form (3) and thus have a finite number of
zeros in thex complex plane.

Consider now the case ofQm(x) in (3) with m > 1. It can be shown that the expression
in braces in (4) can reproduce asymptotically the polynomial of degreem > 1 only if
the potentialU(x) satisfies the following condition everywhere in the complexx-plane:
|U(x)| → ∞ when |x| → ∞. Expanding the expression in braces in equation (4) in the
powers ofE/U(x) one obtains

y(x) ∼ U(x)−
1
4 exp

{ x∫ √
2U(t)

(
1 − E

2U(t)
− E2

8U(t)2
+ · · ·

)
dt

}
. (5)

From this formula, one can easily see that to ensure the leadingxm behaviour of the
expression in braces in (5), the potentialU(x) must behave for large|x| asx2m−2. According
to the Liouville theorem it implies thatf (x) is a polynomial of degree 2m − 1. If we are
interested in the asymptotic form ofy(x), we can keep only the two first terms of the
expansion in the powers ofE/U(x) in the exponential in (5). The higher order terms
in E/U(x) give a contribution behaving as 1/U(x)

3
2 ∼ 1/x3(m−1). After integration they

would be negligible for large|x| corrections. We obtain, thus,

y(x) ∼ U(x)−
1
4 exp

{ x∫ (√
2U(t) − E√

2U(t)

)
dt

}
. (6)

We note now that, ifm > 2, we can also omit the second term in the exponential in (6)
for large values of|x|. Indeed,E/

√
U(t) ∼ 1/xm−1 and form > 2 after the integration it

gives the correction∼ 1/xm−2, negligible for |x| → ∞. For m > 2 we therefore have the
following asymptotic formula fory(x):

y(x) ∼ U(x)−
1
4 exp

{ x∫ √
2U(t) dt

}
. (7)

This asymptotic is to be compared with that of the exact solution (3):

y(x) ∼ xn expQm(x). (8)

As we have established above,U(x) behaves asx2m−2 for large |x|. In order to reproduce
the factorxn in (8), the square root

√
2U(x) in formula (7) should have the following

large-x asymptotic expansion,√
2U(x) ∼ Cm−1x

m−1 + Cm−2x
m−2 + · · · + C−1

x
(9)

where the coefficientC1 satisfiesC−1 = n−(1−m)/2. (The terms decaying faster than 1/x

can be omitted since they do not contribute to the asymptotic of a pre-exponential factor.)
Thus, in the case considered (the degreem is greater than 2), the eigenvalue problem (1) has
a solution of type (3) only if the potentialU(x) is ‘state-dependent’, that is its parameters
depend on the number of zeros of some particular solution. Therefore, in this case, (1)
cannot have infinitely many solutions of type (3).

The last case to consider is thatQm in formula (3) is a second-order polynomial. In
this case, as we have shown above,U(x) ∼ x2 for large |x|, the functionf (x) in (1) is a
third-order polynomial, and the potentialU(x) in (1) has the following form:

U(x) = l(l + 1)

2x2
+ C3x

3 + C2x
2 + C1x + C0

x
. (10)

It is known that the eigenvalue problem (1) with potential (10) has an infinite number of
solutions of type (3) in the following cases:
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(a) x ∈ (−∞, ∞), l = 0, C0 = 0, the one-dimensional harmonic oscillator;
(b) x ∈ [0, ∞), C0 = 0, C2 = 0, the radial equation for the three-dimensional harmonic

oscillator. Our assertion is thus proved.
We are now able to show that the harmonic oscillator and the Coulomb potentials are the

only potentials, belonging to a class of potentials introduced in the present paper, for which
the semiclassical and the exact quantum mechanical quantization give identical results. The
coincidence of the semiclassical and the exact results for the harmonic oscillator and the
Coulomb problem can be explained as follows (Bertocchiet al 1965).

Let us write the well known formula for the number of zeros of an analytic function
y(x),

n = 1

2π i

∫
γ

y ′(x)

y(x)
dx (11)

where γ is a circle |x| = R and n is the number of zeros ofy(x) situated insideγ .
The bound state wavefunctions of the harmonic oscillator and the Coulomb problem have
only a finite number of zeros in a complex plane. Moreover, all zeros of the bound state
wavefunctions are on the real axis.

Let us choose the contourγ in (11) so that all zeros ofy(x) are situated insideγ .
Then one can deform the circleγ , increasing arbitrarily its radiusR. For large values ofR
one can substitute into the integral the WBKJ asymptotic fory(x). One can see that this
substitution introduces an error becoming negligible forR → ∞. SinceR can be chosen
arbitrarily large, one obtains in this way an exact estimation for the integral (11). Using this
result one obtains from (11) the exact discrete spectrum for the one- and three-dimensional
harmonic oscillators and the Coulomb problem.

If in (11) the bound-state wavefunctiony(x) has zeros in the complex plane the situation
is different. The contourγ in (11) has to be chosen in such a way that its interior contains
only the real zeros ofy(x). This means that the distance from the real axis to the contour
γ is finite and is equal to the distance from the real axis to the nearest complex zero of
y(x). Since in the region of finitex the WBKJ solution of equation (1) only gives an
approximation to the exact solution, formula (11) only gives an approximation to the exact
energy spectrum, the quality of approximation being better the larger the distance from the
real axis to the nearest complex zero ofy(x) (Bertocchiet al 1965).

Since, as we saw above, the bound-state wavefunctions for the systems other than the
harmonic oscillator and the Coulomb potential always have an infinite number of zeros,y(x)

has an infinite number of complex zeros. The semiclassical quantization of these systems
therefore gives only an approximation to the exact spectrum.

We summarize our findings as follows. The Coulomb potential, one- and three-
dimensional harmonic oscillator potentials are the only potentials, belonging to the class of
potentials defined in the present paper, for which the eigenvalue problem (1) has infinitely
many discrete spectrum eigenvalues with the eigenfunctions having only a finite number of
zeros in a complex plane. It is due to this fact these two potentials are the only potentials
belonging to the class defined in the present paper, for which the semiclassical and exact
quantum mechanical treatment give the coinciding results.
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